Photon-beam experiments and new light physics

Igal Jaeglé Thomas Jefferson National Accelerator Facility

On behalf of all LOI authors

Snowmass 2021 - October 2, 2020 - Townhall Meeting

Outline

- 1 Letter Of Interest
- 2 Photon-beam and new light physics searches
- 3 Compton vs. Primakoff kinematics
- 4 Tagged photon-beam fixed-target experiments
- **6** Expected sensitivities
- 6 Conclusions

Letter Of Interest

Snowmass2021 - Letter of Interest

Photon-beam experiments and new light physics

Daniel Aloni¹, Sankha S. Chakrabarty^{2,3}, Chien-Yi Chen⁴, Mark-Macrae Dalton⁵, Achim Denig⁶ Sean Dobbs⁷, Liping Gan⁸, Lena Heijkenskjöld⁶, Igal Jaeglé⁵, Masayuki Niiyama⁹, Zisis Papandreou¹⁰, Yotam Soreq¹¹, Alexander Somov⁵, Simon Taylor⁵, Atsushi Tokiyasu¹², Sean Tulin¹³ and Yi-Ming Zhong¹⁴

- LOI, The JLab Eta Factory (JEF) Experiment, Liping Gan et al.
- LOI, Searching for new light hidden particles with η and η' mesons, Sean Tulin et al.

Department of Physics, Boston University, Boston, MA 02215, USA

²Dipartimento di Fisica, Universita di Torino, Via P. Giuria 1, I-10125 Torino, Italy

³Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

⁴Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA

⁵Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

⁶Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Mainz 55099, Germany

Department of Physics, Florida State University, Tallahassee, FL 32306, USA

⁸Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, NC 28403, USA

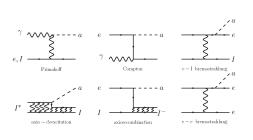
⁹Department of Physics, Kyoto Sangyo University, Kyoto City, Kyoto 603-8555, Japan

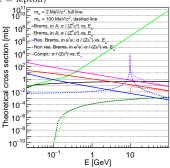
¹⁰Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

¹¹Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel

¹²Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan

¹³Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada

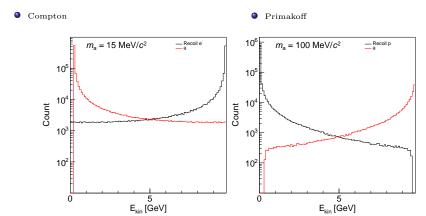

¹⁴Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA


Photon-beam and new light physics searches

Focus on new light physics produced off a nucleon, nucleus, or atomic electron

- $\gamma N \to XN$ (D. Aloni et al. PRL 123 (2019), arXiv:1811.03474 but for ALP case)
- $\bullet~\gamma A \to XA$ (D. Aloni et al. PRL 123 (2019), arXiv:1811.03474 but for ALP case)
- $\gamma e^- \to X e^-$ S. S. Chakrabarty et al. arxiv:arXiv:1903.06225

Where: X = dark scalar, pseudo-scalar, vector, or pseudo-vector - N: nucleon - A: nucleus - e^- : electron X is either invisible or visible i.e. decays $X \to \gamma \gamma$ or $X \to l^+ l^-$ (l = lepton)


Typical invariant mass bump search or missing mass bump search but what if polarized photon-beam and/or nucleon or electron target are used? C.-Y. Chen and al in prep.

Add new observables to the search - single and double polarization observables

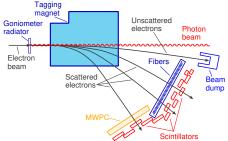
Compton vs. Primakoff kinematics

For $E_{\gamma} = 10 \text{ GeV}$

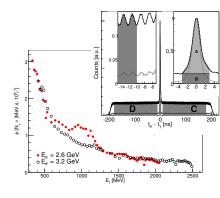
- In Compton process most of the incident photon-energy is transfered to the recoil electron
- In Primakoff process most of the incident photon-energy is transfered to ALP

Compton kinematics facilitate an invisible search, Primakoff off nucleus cross section αZ^2

5 / 10

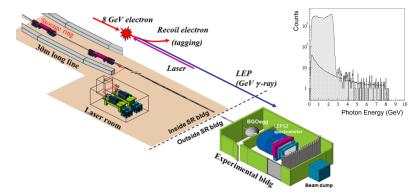

Photon-beam produced by bremsstrahlung

$$e^-_{accelerator}A \to e^-A\gamma$$


- A
- $\sim 100 \mu m$ Cu for unpolarized photon beam
- $\sim 100 \mu m$ C (diamond) for linearly polarized photon beam
- Emitted (unpolarized) photon energy spectrum: $\Phi \sim \frac{1}{E_{\infty}}$
- Emitted photon half-angle: $<\theta^2>^{\frac{1}{2}}=\frac{1}{e^-}=\frac{m_ec^2}{E_{-}^{\text{acclerator}}}$
- \bullet Electrons emitting bremsstrahlung deflected downwards by dipole magnetic field onto

focal plane of tagging system

- Energy and timing extracted
- $E_{\gamma} = E_{e-}^{\text{accelerator}} E_{e-}^{\text{deflected}}$


Typical tagging spectrometer setup. More details in I. Jaegle et al., EPJ A 47 (2011) 89

Photon-beam produced by Laser-backscattering

 $e^-_{accelerator}\gamma_{\rm laser}\to e^-\gamma,$ inverse Compton process

- ullet Tagged photons backscattered from 8 GeV electrons reach max. energies of 2.9 GeV
- Scattered electrons momentum analyzed by last bending magnet before straight section of beam line and then detected in tagging counter

Backscattering of laser light (eV) from high energy electrons (Gev).

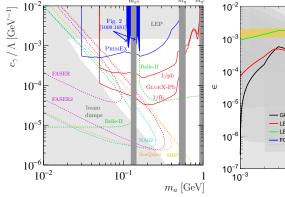
More details in N. Muramatsu et al. NIM A737 (2014) 184-194

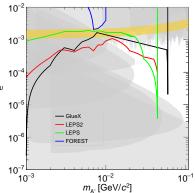
Photon-beam experiments

Experiments	$\Phi_{\gamma} [\gamma/\text{sec}]$	E_{γ} range [GeV]	$\Delta E_{\gamma} \; [\text{MeV}]$
GlueX	5×10^{7}	9 - 12	50
LEPS	5×10^6	1.4 - 2.4	12
LEPS2	5×10^{6}	1.4 - 2.4	12
FOREST	4.5×10^{6}	0.8 - 1.2	1
NPS/CPS	10^{12}	5 - 11.5	un-tagged
A2/MAMI	10^{7}	0.068 - 1.488	4
CB/ELSA	10^{6}	0.5 - 3.1	10
PRIMEX II	10^{7}	4.3 - 5.2	5

Table 1: Tagged photon-beam flux (Φ_{γ}) , energy range, and detector resolution (ΔE_{γ}) for GlueX, LEPS, LEPS2, FOREST, A2/MAMI, CB/ELSA, and NPS/CPS. We also add the information of PRIMEX II, a past photon-beam experiment, for comparison.

- Small experiments "family size" compared to Belle (II) or LHC
- $\bullet~$ But hudge data sets collected since the last 20 years


Under exploited data sets


Expected sensitivities

For unpolarized photon-beam and targets

Primakoff (D. Aloni et al.), nucleon and nucleus target

 Compton (S. S. Chakrabarty et al.), electron target, projected sensitivities on dark photon kinetic mixing for 1 month beam-time at FOREST (blue), LEPS2 (red), LEPS (green), and GlueX (black)

What are we gaining if new detectors are added - veto and/or vertex detector?

Conclusions

Photon-beam experiments can search for new light physics

- Study if adding new observables improves these searches timescale Spring 2021
- Study if adding new detectors improves these searches timescale Spring 2021
- Extract combined sensitivites timescale Spring 2021

An ideal outcome would be that photon-beam experiments/theorists combined their work force when possible

If any questions:

Daniel Aloni: alonidan@bu.edu

Sankha S. Chakrabarty: sankhasubhra.chakrabarty@unito.it

Chien-Yi Chen: chien-yi.chen@northwestern.edu

Igal Jaeglé: ijaegle@jlab.org

Yotam Soreq: soreqy@physics.technion.ac.il Yi-Ming Zhong: ymzhong@kicp.uchicago.edu

Snowmass 2021